Invited talk

Vortex dynamics in strongly interacting Fermi superfluids

<u>**Roati**</u> \mathbf{G} .^{†1,2}

¹National Institute of Optics, CNR, Firenze, Italy ²LENS, University of Florence, Italy

[†]giacomo.roati@ino.cnr.it

Topological defects play a fundamental role in shaping the properties and structures of diverse out-ofequilibrium physical and biological systems across a wide range of scales. These include planetary atmospheres, turbulent flows in classical and quantum fluids, and electrical signaling in excitable biological media¹. In superfluids and superconductors, the motion of quantized vortices is tied to the onset of dissipation, which limits the superflow². Understanding vortex dynamics remains a challenge due to the complex interplay among vortices, disorder and system dimensionality. We address this challenge by exploring vortex matter in strongly interacting Fermi superfluids made of ultracold atoms³. By designing specific vortex configurations and tracking their trajectories with high spatial resolution, we transform our system into an ideal "quantum laboratory" for probing the fundamental nature of vortex-driven instabilities and dissipation^{4,5}. Our research paves the way for deeper insights into vortex-matter phenomena in strongly correlated superfluids.

³W. J. Kwon et al., Nature, 600 (2021).

¹Spiral and Vortices, K. Tsuji and S. C. Miler Editors, Springer Nature (2019).

²B. I. Halperin, G. Refael and E. Demler, Int. J. Mod. Phys. B 24, 20n21 (2010)

⁴D. Hernandez-Rajkov et al., Nat. Phys. 20 (2024).

⁵N. Grani et al., arXiv:2503.21628v1 (2025).