Invited talk

Precision spectroscopy of few-body atoms and molecules

Clausen G.¹, Scheidegger S.¹, Doran I.¹, Merkt F.¹

ETH Zurich, Switzerland

Present address: JILA, Boulder, Colorado, USA

High-resolution spectroscopic measurements in few-electron atoms and molecules are increasingly used as a means to test the foundations of the theory of atomic and molecular structure. Modern first-principles calculations of the energy-level structure of few-electron atomic and molecular systems consider all interactions in the realm of the standard model of particle physics. 1,2,3,4 Systematic comparisons of the results of such calculations with precise spectroscopic measurements in simple atoms and molecules such as H, He, H₂⁺, H₂ and He₂⁺ aim at searching for effects not yet included in the theory (see, e.g., Refs. 5,6) and at reducing the uncertainties of physical constants (see e.g., Refs. 1,7,8).

This talk will present precision spectroscopic measurements of transitions to high Rydberg states of H, He, and H₂, which we use to determine accurate values of their ionization energies and, in the case of H₂, also of the spin-rovibrational energy-level structure of H_2^+ . The talk will describe our experimental strategy to overcome limitations in the precision and accuracy of the measurements originating from the Doppler effect, the Stark effect, and the laser-frequency calibration. The experimental results will then be compared with the results of first-principles calculations that include the treatment of finite-nuclear-size effects and relativistic and quantum-electrodynamics corrections up to high order in the fine-structure constant. Recent aspects of these investigations include a new determination of the Rydberg constant⁹ as a contribution to the resolution of the proton-size puzzle¹⁰, a new method to record Doppler-free single-photon excitation spectra in the visible and UV spectral ranges¹¹ (see Figure 1), a "zero-quantum-defect" method to determine the energy-level structure of homonuclear diatomic molecular ions such as H_2^+ , and a 9σ discrepancy between theory and experiment in the ionization energies of metastable (1s2s $^3\mathrm{S}_1$) $^3\mathrm{He}$ and $^4\mathrm{He}$.

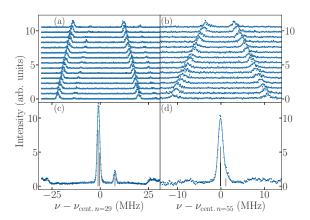


Figure 1: Imaging-assisted Doppler-free spectra of the (a) $(1s)(29p)^3P_J \leftarrow (1s)(2s)^3S_1$ and (b) $(1s)(55p)^3P_J \leftarrow (1s)(2s)^3S_1$ transitions in ⁴He in a supersonic beam, obtained by spatial imaging of atoms with different transverse-velocity components in the atomic beam (dots) and fits to the experimental spectra (solid lines). The photoexcitation laser beam is retroreflected so that each transition is recorded as a pair of lines with opposite Doppler shifts. (c) and (d): Sums of the corresponding cross-correlation spectra used to extract the first-order-Doppler-free line positions. The stick spectra give the positions of the J=2, 1 and 0 fine-structure components in order of increasing frequency and the full line represents the spectrum calculated using the line-shape parameters determined in the least-squares fits. From Ref.¹⁴

¹E. Tiesinga, P. J. Mohr, D. B. Newell, and B. N. Taylor, Rev. Mod. Phys. **93**, 025010 (2021).

 $^{^2\}mathrm{V}.$ Korobov, L. Hilico and J.-Ph. Karr, Phys. Rev. Lett. $\mathbf{118},\,233001$ (2017).

³V. Patkos, V. A. Yerokhin, and K. Pachucki, *Phys. Rev. A* **103**, 042809 (2021).

⁴M. Puchalski, J. Komasa, P. Czachorowski, and K. Pachucki, Phys. Rev. Lett. 122, 103003 (2019).

⁵C. Delaunay et al., Phys. Rev. Lett. **130**, 121801 (2023).

⁶M. Germann et al., Phys. Rev. Res. 3, L022028 (2021).

⁷ A. Grinin et al., Science **370(6520)**, 1061–1066 (2020).

⁸S. Schiller, J.-Ph. Karr, *Phys. Rev. A* **109**, 042825 (2024).

⁹S. Scheidegger, and F. Merkt, *Phys. Rev. Lett.* **132**, 113001 (2024).

¹⁰ A. Antognini et al., Science **339 (6118)**, 417–420 (2013).

¹¹G. Clausen, S. Scheidegger, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 131, 103001 (2023).

¹²I. Doran, N. Hölsch, M. Beyer, and F. Merkt, *Phys. Rev. Lett.* **132**, 073001 (2024).

¹³G. Clausen, K. Gamlin, J. A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. A 111, 012817 (2025).