Measurement of the g factor of ground-state ⁸⁷Sr at the parts-per-million level using co-trapped ultracold atoms

Thekkeppatt P.¹, Digvijay¹, Urech A.^{1,2}, Schreck F.^{1,2}, van Druten K.^{†1,2}

¹ Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, The Netherlands

 2 QuSoft, Amsterdam, The Netherlands

[†]n.j.vandruten@uva.nl

We demonstrate nuclear magnetic resonance of optically trapped ground-state ultracold ⁸⁷Sr atoms. Using a scheme in which a cloud of ultracold ⁸⁷Rb is co-trapped nearby, see Fig. 1, we improve the determination of the nuclear g factor, g_I , of atomic ⁸⁷Sr by more than two orders of magnitude, reaching accuracy at the part-per-million level. We achieve similar accuracy in the ratio of relevant g factors between Rb and Sr. This establishes ultracold ⁸⁷Sr as an excellent linear in-vacuum magnetometer. These results are relevant for ongoing efforts towards quantum simulation, quantum computation and optical atomic clocks employing ⁸⁷Sr, and these methods can also be applied to other alkaline-earth and alkaline-earth-like atoms.

Figure 1: Schematic of the experimental setup used to measure g_I of ⁸⁷Sr in the electronic ground state. Clouds of Rb and Sr atoms are confined in respective crossed optical dipole traps, where the (near-)vertical dipole trap beam is common to both traps. The microwave radiation is emitted using a dedicated microwave antenna, whereas the radio frequency radiation is emitted using coils carrying alternating current.